Dr. Marques Sophie Office 519 Linear algebra

Spring Semester 2014 marques@cims.nyu.edu

Exercise $1(\star)$:

If A is of the form

$$A = \left(\begin{array}{c|c} B & D \\ 0 & C \end{array} \right)$$

where B and C are two matrices, prove that

$$det(A) = det(B)det(C)$$

Exercise $2(\star)$:

Prove that there is a basis for K^2 so that the matrix of the operator $L_A : K^2 \to K^2$, defined by

$$A = \begin{pmatrix} 2 & 4\\ -1 & -2 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix}$$

over $\mathbb C$ and $\mathbb R$ becomes

Exercise $3(\star)$:

1. The matrix

$$A = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

(θ real) yields an operator $L_A : \mathbb{R}^2 \to \mathbb{R}^2$ that you will recognize as a rotation (counter clock wise) about the origin by θ radians. Describe its eigenspaces over \mathbb{R} and over \mathbb{C} .

2. Is this matrix diagonalizable over \mathbb{R} , over \mathbb{C} ?

$$A = \left(\begin{array}{cc} 3\sqrt{3} & -3\\ 3 & 3\sqrt{3} \end{array}\right)$$

Determine all complex eigenvalues of A. If so, find a basis in \mathbb{C}^2 that diagonalizes $L_A: \mathbb{C}^2 \to \mathbb{C}^2$.

Note: You can give the complex eigenvalue in polar form. That is in the form:

$$\lambda = re^{i\theta} = (rcos(\theta)) + i(rsin(\theta))$$

with $r \geq 0$, $\theta \in \mathbb{R}$.

Exercise $4(\star)$:

If $\dim_K(V) = n$ and $T: V \to V$ has n distinct eigenvalues in K then T is diagonalizable, so V is the direct sum $\bigoplus_{i=1}^n E_{\lambda_i}$ of 1-dimensional eigenspaces.

Exercise $5(\star)$:

Suppose $A \in M_n(\mathbb{C})$. If A is symmetric $A = A^t$ with complex entries, does L_A always have a diagonalizing basis? Prove or give a counterexample.

Hint: Try some symmetric 2×2 matrices $A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$. Note: (context) If A is self-adjoint in $M_n(\mathbb{C})$ so that

$$A^* = A$$

(where $(A^*)_{ij} = \overline{A_{ji}}$ for all i, j) it is well known that there is a basis in K^n that diagonalizes the corresponding linear operator $L_A : K^n \to K^n$. (In fact there is even a basis that is ortonormal with respect to the standard inner product in K^n .). Now, if we suppose that A is only symmetric with

$$A^t = A$$

(where $(A^t)_{ij} = A_{ji}$, for all i, j), when $A \in M_n(\mathbb{R})$ symmetry is the same thing as self adjointness and symmetry $A^t = A$ suffices to guarantee orthonormal diagonalizability of L_A . In this exercise we see what happens when $A \in M_n(\mathbb{C})$ only symmetric.